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Abstract: 14 

Probabilistic flood hazard assessment is a promising methodology for estuarine risk assessment 15 

but currently remains limited by prohibitively long simulation times. This study addresses this 16 

problem through the development of an emulator, or surrogate model, which replaces the 17 

simulator (in this case the coupled ADCIRC+SWAN model) with a statistical representation that 18 

is able to rapidly predict estuarine variables relevant to flooding. Emulation of water levels 19 

(WLs), non-tidal residual, and significant wave height, is explored at Grays Harbor, Washington 20 

(WA) USA using Gaussian process regression. The effectiveness of the methodology is validated 21 

at various model simplification levels to determine where error is being sourced. Emulated WLs 22 

are found to be skillful when compared to over a decade of tide gauge observations (root mean 23 

square error, RMSE, <15 cm). The largest loss of skill in the method originates with 24 

ADCIRC+SWAN attempting to reproduce observations, even when the majority of relevant 25 

physics are included. Subsequent simplifications to the simulator (input reduction techniques) 26 

and the emulator itself are found to introduce a trivial amount of error (average increase in 27 

RMSE of 1 cm). Emulated WLs are also compared to spatially varying observations and found to 28 

be equally skillful throughout the estuary. An example emulation application is explored by 29 

decomposing the relative forcing contributions to extreme WLs across the study site. Results 30 

show a compound nature of extreme estuarine WLs in that all forcing dimensions contribute to 31 

extremes, with streamflow having the least influence and tides the largest. Overall the approach 32 

is shown to be both skillful and efficient at reproducing critical hydrodynamic variables, 33 

suggesting that emulation may play a key role in improving our ability to probabilistically assess 34 

flood risk in complex environments as well as being promising in a range of other applications.  35 

Keywords: Emulation; Gaussian Process Regression; ADCIRC+SWAN; Estuary; Probabilistic 36 

Modeling; Water Levels 37 

1. Introduction 38 

Modeling estuarine hydrodynamics remains both a challenge and a goal for the scientific 39 

community. Estuaries and bays are often densely populated with significant economic and 40 

cultural investment [Pendleton, 2010]. They are also subject to a unique flood hazard 41 

environment, with high water levels (WLs) driven by numerous contributing processes including 42 

both offshore and local waves, storm surge, and river inflows, among others. Over the past 43 
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several decades, research efforts have led to improved computational models and increased 44 

physical understanding of estuarine flood dynamics [Bode and Hardy, 1997; Kantha and 45 

Clayson, 2000; Ganju et al., 2015]. However, increasing hydrodynamic model predictive skill is 46 

generally coupled to increasing complexity within numerical models and a correspondingly 47 

larger computational load. This has led to computational time, rather than a physical 48 

understanding of the problem, being a limiting control on our ability to answer questions about 49 

estuarine flooding. 50 

Increasing computer processing power and code parallelization has pushed the boundary 51 

for what can be explored with complex computer codes. However, even with these advances, 52 

many questions still cannot be comprehensively addressed due to computational limitations. One 53 

example is the recent focus by the scientific community on uncertainty in model results 54 

[Mastrandrea et al., 2010; Green et al., 2011]. In the field of flood hazards, a major thrust area 55 

has been probabilistic assessments, which brings the benefits of uncertainty quantification, utility 56 

as a stakeholder-centered decision making tool, better handling of extreme events, and more 57 

skillful flooding estimates [Cloke and Pappenberger, 2009; Di Baldassarre et al., 2010; Dale et 58 

al., 2014]. However, the combination of multiple model iterations (required for probabilistic 59 

modeling) and large per-run computational costs has remained a barrier for moving forward. 60 

Often the solution to long simulation times is a compromise, such as simplifying or 61 

eliminating various forcing components [Purvis et al., 2008; Lin et al., 2010]; using smaller 62 

ensemble sizes [Davis et al., 2010]; or simplifying model physics [Dawson et al., 2005; Moel et 63 

al., 2012]. A promising recent development has been to implement variable model complexity, 64 

with a fast model determining relevant or extreme events and a more highly-resolved, accurate 65 

model being used to simulate the extremes [Lin et al., 2010, 2012; Orton et al., 2016]. This 66 

technique has been successfully demonstrated for hurricane-induced flooding but is potentially 67 

problematic for other regions. For example, environments not dominated by tropical cyclones 68 

often are defined by compound events where combinations of non-extreme forcings can combine 69 

to create extremes [Leonard et al., 2014; Wahl et al., 2015; Moftakhari et al., 2017; Zscheischler 70 

et al., 2018]. In addition, event based techniques can still be considered computationally limited 71 

as the full parameter space cannot usually be explored. There remains a need for a modeling 72 

technique that can bridge the gap between time-intensive, complex models and fast simulation 73 

times.  74 
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This paper investigates emulation as a technique for the efficient prediction of estuarine 75 

hydrodynamic variables in Grays Harbor, Washington (WA) USA. The foundational idea of 76 

emulation (also referred to as surrogate modeling, response surface modeling, and meta-77 

modeling, among others) is the replacement of a slower processes-based model (a simulator) 78 

with a fast, statistical model (an emulator) [O’Hagan, 2006; Razavi et al., 2012]. In the standard 79 

modeling paradigm, the map between simulator inputs and outputs is based on the laws of 80 

physics as implemented within a process-based model [Castelletti et al., 2012]. In emulation, this 81 

map is approximated using a statistical model. The benefit is that, following an upfront 82 

computational expense to create a training dataset and train the emulator, applying the emulator 83 

is nearly instantaneous. Thus, emulation represents a tradeoff between short simulation times and 84 

errors associated with the approximation. This tradeoff suggests that emulation may be ideal for 85 

probabilistic flood modeling along with many other potential applications including assessments 86 

of model uncertainty, model optimization, sensitivity analysis, real time forecasting, and extreme 87 

event analysis [Oakley, 1999; Kennedy et al., 2006; Levy and Steinberg, 2010]. 88 

The general concept of emulation originated in the 1980s through the idea of computer 89 

experiments [Sacks et al., 1989]. Since then, emulation ideas have spread widely resulting in a 90 

rich literature of applications, emulator formulations, and theories from numerous fields. Razavi 91 

et al. [2012] reviews emulation in the field of water resources, with over 30 studies revealing a 92 

wide range of applications and emulation approaches. As a brief overview of coastal 93 

applications, Gouldby et al [2014], Malde et al. [2016b] and Rueda et al. [2016] successfully 94 

implemented emulators for wave prediction problems using SWAN [Booij et al., 1997] as a 95 

simulator. The pairing of SWAN and emulation was extended to delineating offshore conditions 96 

causing wave induced coastal flooding by Rohmer and Idier, [2012] by using kriging and an 97 

adaptive sampling technique. Timmermans [2015] used emulation to explore how tuning 98 

parameters affect uncertainty in results from the Wave Watch III [Tolman, 2009] wave model. 99 

Liu and Guillas [2017] investigated the effect of uncertainty in bathymetry on tsunami height 100 

predictions using a novel merging of Gaussian process regression (GPR) emulation with 101 

dimensional reduction techniques. 102 

In the context of flooding, emulation has been applied to river channel flooding [Apel et 103 

al., 2008] and coastal dyke systems [Moel et al., 2012], although from the relatively simplistic 104 

perspective of lookup tables. Surge response functions [SRF; Resio et al., 2009; Song et al., 105 
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2012] can be considered a specific case of emulation through regression of dimensionless 106 

cyclone scaling terms. However, SRFs are limited in application to tropical cyclones, and have 107 

been shown to perform poorly in complex environments [Taylor et al., 2015]. As an alternative 108 

to SRFs, Kim et al. [2015] used an artificial neural network to emulate coupled 109 

ADCIRC+STWAVE calculated surge from tropical cyclones. This approach was enhanced by 110 

Bass and Bedient [2018] who used a similar strategy but with the addition of a coupled 111 

hydrologic model and GPR as the emulator formulation. Jia et al. [2013; 2016] used GPR 112 

emulation for predicting tropical cyclone surges.  113 

Overall, multiple studies have demonstrated the potential of emulation in a coastal hazard 114 

setting. Surge from tropical cyclones has, in particular, seen a variety of successful emulator 115 

implementations. This study builds on these recent efforts but explores an estuary in the USA 116 

Pacific Northwest (PNW) that does not experience tropical cyclone forcing. This results in a 117 

unique challenge in terms of handling diverse forcings and a potentially larger input parameter 118 

space, since there is no dominant forcing dimension. Other studies focused on predicting WLs, 119 

such as those by Jia et al. [2013; 2016], Kim et al. [2015], and Bass and Bedient [2018], reduce 120 

input dimensionality through considering only cyclones and using discrete cyclone 121 

characteristics as input dimensions. This study, however, considers a general application of 122 

emulating the coupled ADCIRC+SWAN [ADCSWAN; Dietrich et al., 2011] simulator in which 123 

any combination of forcings can be used to calculate WLs. This paper is intended as a rigorous 124 

investigation into the applicability of emulation in this new context. Therefore, the focus here is 125 

primarily on describing the methodology and validation and only a single application, 126 

decomposing extreme estuarine water levels, is presented.  127 

2. Study Sites and Observations 128 

2.1 Study Site  129 

Grays Harbor, WA (Figure 1) is an excellent candidate for testing emulation as it exhibits 130 

many of the complexities that make estuarine modeling difficult. Grays Harbor is predominantly 131 

shallow, dominated by depths averaging less than 5 meters, but also contains a maintained 132 

(United States Army Corps of Engineers; USACE) deep-water navigation channel giving it 133 

significant depth variability (Figure 1). The bay exhibits spatial variability in WLs [Cialone et 134 
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al., 2001] as a result of its size [approximately 235.3 km2, Engle et al., 2007], shape, and 135 

gradients in forcing. Grays Harbor is located in the PNW (Figure 1) and is therefore subject to an 136 

energetic storm and wave climate. A Global Ocean Wave 2 (GOW2) reanalysis [Perez et al., 137 

2017] near the study site (see Figure 1) reveals a mean offshore significant wave height (Hs) of 138 

2.5 meters with events exceeding 7.5 meters annually. Extreme storm events are generally 139 

associated with extratropical cyclones that can produce strong winds, pressure differentials, and 140 

precipitation [Allan and Komar, 2002b; Mass and Dotson, 2010]. These events are often 141 

associated with significant non-tidal residuals (NTR) [Allan and Komar, 2002b, 2006; Allan et 142 

al., 2011; Serafin et al., 2017], although of a smaller magnitude than locations impacted by 143 

tropical cyclones or with broader continental shelves [Zhang et al., 1999]. Within this study, 144 

NTR is defined as an observed or modeled WL with tides removed (with the specifics of how 145 

NTR is calculated detailed in section 4.3). Grays Harbor has significant hydrological input from 146 

the Chehalis, Humptulips, Hoquiam, Elk, and Johns Rivers which collectively drain a watershed 147 

of over 7,000 km2 for an average monthly runoff volume of 22 million m3/month [Engle et al., 148 

2007].  149 
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 150 

Figure 1: Grays Harbor, WA study site and locations of observational datasets. Circles and triangles 151 
represent USACE deployments with co-located instruments labeled with a single number representing 152 
both WL and Hs stations. The main panel shows the bathymetry and topography of the estuary in the 153 
NAVD88 Datum. The inset panel shows the larger geographical context of the estuary with the thin black 154 
line delineating the domain of the hydrodynamic model. The purple square within the inset is the location 155 
of the utilized GOW2 node (located at 47° N, 125° W). 156 

2.2 Observational Data  157 

This study utilizes a variety of observational datasets ranging from instrument 158 

deployments to reanalysis products. Forcing and model development datasets are explained in 159 

the following section (2.2.1), while section 2.2.2 details observations specifically used for model 160 

validation.  161 
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2.2.1 Forcing and Model Development Datasets 162 

Wave forcing for the model was obtained from the GOW2 reanalysis of Perez et al. 163 

[2017] with output selected from a node located at (Lat: 47° N, Lon: 125° W; Figure 1). 164 

Atmospheric forcing was provided by the North American Regional Reanalysis (NARR) 165 

[Mesinger et al., 2006]. NARR provides a wide range of gridded atmospheric variables from 166 

which the 3-hourly 10m wind fields and 3-hourly surface pressure fields were utilized. 167 

Streamflow was obtained from USGS river gauges with total estuary inflow constructed as the 168 

sum of three gauged rivers, the Chehalis, Satsop, and Wynoochee (USGS stations 12031000, 169 

12035000, and 12037400 respectively). The Satsop and Wynoochee rivers are tributaries to the 170 

Chehalis river which join the Chehalis below the Chehalis gauge. Therefore, the sum of these 171 

three gauges reproduces the majority of the Chehalis flow into the Grays Harbor estuary. While 172 

Grays Harbor has other river inlets, the majority of the input flow is concentrated at the Chehalis 173 

River which captures around 80% of the watershed area. For simplicity, as well as due to 174 

temporal availability of gauge data, only the Chehalis input (as constructed from the three 175 

gauged rivers) is included in the study with all other streamflow inputs assumed to be minimal 176 

with only local influences on variables of interest. 177 

The bathymetry data for the simulator grid were developed by blending two National 178 

Oceanic and Atmospheric Administration (NOAA) digital elevation models (DEMs): the 179 

Astoria, OR tsunami DEM (1/3 arc second) and the coastal relief model (3 arc seconds) [NOAA 180 

National Centers for Environmental Information, 2003; Love et al., 2012]. Bay topography was 181 

sourced from Oregon Department of Geology and Mineral Industries (DOGAMI) LiDAR 182 

[DOGAMI, 2010].  183 

2.2.2 Validation Datasets 184 

In addition to forcing, a series of observational datasets were used to validate simulated 185 

and emulated variables within the study site. The first dataset is the Westport, WA tide gauge 186 

(NOAA station ID # 9441102) which provides continuous hourly WL data beginning in 2006. 187 

WL observations were decomposed into constituent components (e.g., deterministic tide, 188 

monthly mean sea level anomalies (MMSLA), storm surge etc.) using the approach described in 189 
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Serafin and Ruggiero [2014]. The five largest NTR events on record were extracted for testing 190 

model skill. A brief summary of these storm events is provided in Table 1.  191 

Table 1: Summary of forcing for the five largest NTR events at Grays Harbor, WA. Forcing values are 192 
reported at the occurrence of maximum NTR. 193 

  Storm 1 Storm 2 Storm 3 Storm 4 Storm 5 

Date 12/15/06 12/3/07 01/12/14 12/12/14 12/11/15 

Non-Tidal Residual (m) 0.73 0.93 0.66 0.58 1.11 

Significant Wave Height (m) 8.0 11.1 8.5 6.2 11.1 

Peak Wave Period (sec)  12.7 15.4 14.3 12.2 18.2 

Wave Direction (deg.) 243 195 259 229 248 

Surface Pressure (HPa.) 977 989 989 986 984 

Wind Speed (m/s) 17.5 19.2 14.9 9.1 12.3 

Wind Direction (deg.)  217 201 238 218 198 

Streamflow (m3/s) 1270 2020 860 670 1510 

 194 

Water level observations at the tide gauge were supplemented by a field campaign carried 195 

out by the USACE from September-December 1999 [Figure 1, Cialone et al., 2001; 2002]. This 196 

dataset includes seven locations near the inlet with bottom mounted tripods measuring wave 197 

characteristics, WLs, tidal currents, and suspended sediment concentrations. Additionally, five 198 

surface stations were distributed throughout the bay measuring WLs, conductivity, and 199 

temperature. The USACE field campaign was broken up into two deployments (with a small 200 

maintenance/data collection break between the two). Instruments were replaced in approximately 201 

the same location except for Hs station 0 which was moved to location 7 for the second 202 

deployment [Cialone et al., 2002]. Figure 1 illustrates the spatial distribution of the various 203 

observation stations which have been renamed in this paper for clarity. 204 

3. Methods 205 

3.1 Simulator Configuration 206 

This study utilizes the coupled Advanced Circulation [ADCIRC; Luettich and Westerink, 207 

1992] and unstructured Simulating Waves Nearshore [SWAN, Zijlema, 2010] simulator 208 
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[ADCSWAN; Dietrich et al., 2011]. ADCSWAN has seen extensive validation and success in 209 

predicting WLs and NTR at various estuaries around the world [Dietrich et al., 2012; Bhaskaran 210 

et al., 2013; Krien et al., 2015]. Recently, ADCSWAN has been successfully implemented in the 211 

PNW with good agreement between simulator output and observations of WLs, NTR, and 212 

currents [Cialone et al., 2002; Cheng et al., 2015b]. ADCSWAN is implemented in the 2D depth-213 

integrated barotropic mode which has been shown to perform with acceptable error for 214 

computing WLs and depth integrated currents in estuaries [Resio and Westerink, 2008; Weaver 215 

and Luettich, 2010]. ADCIRC is run in the fully 2-way coupled implementation with SWAN, 216 

which has been shown to be critical for resolving interactions between waves and nearshore 217 

hydrodynamics [Cialone et. al., 2002; Funakoshi et al., 2008; Dietrich et al., 2010, 2011;]. 218 

ADCSWAN is run on an unstructured mesh that extends beyond the continental shelf 219 

(approximately 115 kilometers offshore; Figure 1). Unstructured meshes provide flexibility in 220 

simulator resolution with the utilized model grid having element sizes ranging from around 7,000 221 

meters offshore to under 20 meters within the inner Grays Harbor channel.  222 

3.2 Dimensional Reduction and Levels of Simplification 223 

Emulator construction requires sampling the full input parameter space. This constraint 224 

dictates that the number of times the simulator must be run to create the training dataset is 225 

proportional to the number of dimensions included as inputs. In general, process-based 226 

hydrodynamic simulators are based on many inputs making some form of dimensional reduction 227 

necessary. Emulator construction thus requires finding a balance between minimizing the 228 

number of inputs and maintaining sufficient complexity to acceptably resolve output variables of 229 

interest. 230 

Figure 2 provides a conceptual model of the dimensional reduction approach taken in this 231 

study (through simplifications), transforming the full process-based simulator (ADCSWAN) into 232 

an emulator. Each of the simplifications, noted on the right side of Figure 2, theoretically 233 

introduces some level of error into the output, noted on the left side of Figure 2. These errors are 234 

discussed in this paper both as individual contributions, and in the cumulative (sum of all errors 235 

up to a given level) sense. When discussed explicitly in this paper, simplification levels will be 236 

capitalized. For example, a comparison of model output from the level 3 simplification 237 

(Stationary Simulator) to Observations (no simplification) quantifies the cumulative level 3 error. 238 
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The following sections (3.2.1 – 3.2.3) explain each simplification in this hierarchy while 239 

corresponding error is quantified in the Results section.  240 

 241 

Figure 2: Hierarchy of model simplifications between observations (top) and emulator output (bottom). 242 
Each simplification is associated with a level (right side of the figure) and some amount of error (defined 243 
on the left side of the figure). 244 

 245 

3.2.1 Simulator Simplifications  246 

The first level of simplification is simply that of using a process-based simulator. 247 

Simulators are unable to exactly reproduce observations for a variety of reasons ranging from 248 

incorrect or unresolved physics (e.g., assumptions, parameterizations, etc.) to numerical 249 

approximations (truncation errors, etc.) to incorrect or biased input forcing. The x induced by 250 

this simplification is primarily a function of the chosen model, model tuning, and the quality of 251 

forcing/bathymetric information. Research has shown that errors in model inputs such as 252 

bathymetry and mesh resolution [Bunya et al., 2010; Weaver and Slinn, 2010] and forcing fields 253 

[Madsen and Jakobsen, 2004; Lewis et al., 2013; Lakshmi et al., 2017] are significant sources of 254 

model error. Therefore, the specific configuration and choice of ADCSWAN (section 3.1) and 255 
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the quality of observational data (section 2.2.1) are the primary controls on the impact of this 256 

simplification. 257 

This study considers emulation of a specific implementation of the ADCSWAN model 258 

and therefore the model grid (bathymetry, resolution, etc.) is held constant. Additionally, 259 

ADCSWAN contains a large number of input switches, tuning parameters, forcing options, 260 

numerical configurations, and other choices [Westerink et al., 1992]. This study holds all general 261 

model configuration parameters constant leaving the various forcing components of WL 262 

variability as the sole driver of input dimensionality within the emulator. 263 

3.2.2 Forcing Simplifications  264 

Even with the simplification of holding the model configuration fixed, the input 265 

dimensionality remains high, due to the numerous physical forcing mechanisms. Below we 266 

describe simplifications that reduce the model dimensionality to 16. This reduction is desirable 267 

since it requires a smaller training dataset and therefore produces a more efficient emulator 268 

construction.  269 

3.2.2.1 Wave Simplification  270 

It is well known that offshore wave energy can impact water levels within bays such as 271 

Grays Harbor [Olabarrieta et al., 2011; Cheng et al., 2015b]. Wave forcing is implemented in the 272 

simulator using a JONSWAP spectrum fitted to peak wave period (Tp), Hs, mean wave direction 273 

(MWD), and directional spread parameters. While research has shown the importance of forcing 274 

with full directional spectra for reproducing wave observations [Rogers et al., 2007; Montoya et 275 

al. 2013], most studies accounting for wave influence on WLs use simpler bulk parameter-based 276 

formulations. Therefore, a fitted JONSWAP spectrum is used for both the Full (level 1) and 277 

Simplified Simulator (level 2) comparisons. Based on previous research in the PNW [Cheng et 278 

al., 2015a], directional spread is held constant at 20 degrees, and wave forcing is applied 279 

uniformly along the Full Simulator open boundary (Figure 1). With these simplifications, wave 280 

forcing is included in the emulator as three dimensions: Hs, Tp, and MWD. 281 
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3.2.2.2 Atmospheric Simplification 282 

Atmospheric forcing represents a unique challenge for emulation due to the spatial 283 

variability of wind and pressure fields. Gridded inputs represent a high degree of dimensionality, 284 

with every node potentially representing an input dimension. For this reason, a sensitivity study 285 

was undertaken to see if spatially constant atmospheric forcing could be used as an 286 

approximation of the full forcing fields. WL output from simulator runs with full gridded forcing 287 

were compared to runs with spatially constant forcing. Results indicated (not shown) that the 288 

error introduced in predicted WLs by the spatially constant assumption was acceptable in 289 

comparison to the corresponding reduction in dimensionality. This error is quantified in the 290 

Results section (along with other simulator simplifications) as level 2 error. Adopting the 291 

spatially constant assumption, atmospheric forcing is reduced in the emulator framework to three 292 

dimensions: wind speed, wind direction, and sea level atmospheric pressure. 293 

3.2.2.3 Tidal Simplification 294 

Tidal forcing is generally represented in hydrodynamic models through harmonic 295 

constituents. Many studies using ADCIRC are forced with eight or fewer constituents, mainly 296 

because global databases of tidal constituents (e.g., TPXO [Dushaw et al., 1997], or LeProvost 297 

[Le Provost et al., 1994]) are typically limited to that number. Despite this, simulations using this 298 

small number of constituents are typically found to agree well with both harmonic analysis 299 

derived and observed tidal elevations [Westerink et al., 1992; Blain and Rogers, 1998; Blain et 300 

al., 2001]. ADCIRC simulates tidal forcing as a boundary elevation time series [Luettich et al., 301 

1992] determined by a spatially variable, temporally constant phase and amplitude and a 302 

temporally variable, spatially constant equilibrium argument and nodal factor. Amplitudes and 303 

phases are determined by the simulator boundary location and are therefore not an emulator input 304 

dimension when considering a fixed study site. The nodal factor represents adjustments of the 305 

amplitude/phase of each constituent that results from the nodal tide cycle. The equilibrium 306 

argument (deterministic based on date and time) controls the timing of the harmonic. 307 

While tides are deterministic, they are included within the emulator as forcing for a 308 

variety of reasons which will be described in section 3.2.3. In approaching simplifications, a 309 

sensitivity test was performed to determine the tidal dimensionality required for accurately 310 
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reproducing maximum WLs during storm events (Table 1). It was found that removing the nodal 311 

factor did not significantly change simulated WLs. After this simplification, results showed that 312 

eight harmonics (without nodal factors) were sufficient for accurately producing WLs. This 313 

allows tides to be included in the emulator as eight input dimensions: 8 harmonic equilibrium 314 

arguments, each ranging from 0 to 360 degrees. 315 

3.2.2.4 Streamflow Simplification 316 

Streamflow is represented in ADCIRC as a flux of water into the domain (specified as a 317 

normal flow per unit width of boundary). This allows the simulation of large rivers that have 318 

significant cross-channel velocity profiles and for calibration where data on these cross-channel 319 

profiles are available. For this study, we instead specify a laterally constant velocity profile 320 

across each river boundary. This simplification is common [Bunya et al., 2010; McKay and 321 

Blain, 2010], especially if the boundary is far enough away from the area of interest that a 322 

natural flow profile can develop. This allows streamflow to be represented as a single input 323 

dimension (the total volumetric flow rate) for each river inlet.  324 

3.2.2.5 Base Water Level Simplifications  325 

A final input dimension is considered within the emulator framework as a “Base WL” 326 

parameter. This is included to account for large scale changes to estuary sea level, as is 327 

experienced through MMSLAs, seasonal variability, and sea level rise (SLR) [Serafin and 328 

Ruggiero, 2014]. These forcing dimensions are defined in the simulator simply as a static change 329 

to mean sea level and are therefore included in the emulator as a single input dimension.  330 

3.2.3 Simulator Stationarity Simplification 331 

ADCSWAN and other process-based hydrodynamic simulators are dynamic in that both 332 

inputs and outputs are functions of time and the simulator state is determined, in part, by 333 

previous states. Seeking simplicity, this study makes the assumption that the dynamic system can 334 

be approximated using a series of stationary simulations. Precedents for such an assumption exist 335 

for coastal systems, including spectral evolution in wave modeling (SWAN) approximated using 336 

a series of steady-state simulations [Rogers et al., 2007; Rusu and Pilar, 2008]. 337 
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Simplifying tidal forcing with stationary simulations is difficult since there is no tidal 338 

equilibrium in WLs. One approach would be to consider tides as a series of horizontal water 339 

surfaces of different elevations (corresponding to tidal phases). This would reduce tidal forcing 340 

dimensionality to a single value (tidal WL), but at the cost of losing spatial variability. Testing 341 

showed that, for the Grays Harbor study site, tidal wave evolution and propagation across the 342 

estuary results in significant spatial variability in tidally forced WLs. A second approach would 343 

be to decouple NTR and tidal WLs and add the two as a linear summation. However, further 344 

testing confirmed that this simplification results in significant error. Therefore, a hybrid solution 345 

was developed in which all non-tidal forcing is stationary, but tides are computed dynamically 346 

with model output recorded only at the specific moment of interest. This approach is appropriate 347 

since tides are deterministic and, for a specific set of equilibrium arguments, the previous state of 348 

tide induced WLs will always be the same. This approach allows tidal forcing to be simplified 349 

but retains the spatial variability in tidal WLs and the nonlinear interactions with other processes.  350 

 351 

 352 

Figure 3: Panel (a): Comparison of NTR during storm 2 from a fully dynamic simulation (black line) and 353 
simplified stationary simulations (black dots). Panel (b): Example stationary run (at the peak of the storm) 354 
showing how the stationary NTR is calculated. The horizontal bold dotted line represents the time of the 355 
stationary run. At this time, NTR is calculated by subtracting the value of a tide only run from the value 356 
of the stationary run (Bold red line). This NTR value is plotted as a red outlined dot in panel (a).  357 

 358 
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Figure 3 illustrates how stationary runs compare to the Full Simulator (dynamic). Figure 359 

3a compares NTR from the fully forced ADCSWAN (simplification level 1; black line) and 360 

seven stationary ADCSWAN runs (simplification level 3; black dots) during storm 2 (Table 1). 361 

NTRs are computed for both cases by subtracting a ‘tides only’ simulation from the fully forced 362 

model. Figure 3b demonstrates how the stationary NTR is computed for the peak of storm 2. 363 

This NTR value is plotted in Figure 3a as a red outlined dot. The agreement between the fully 364 

dynamic run and the seven stationary runs was found to be sufficient, with an RMSE error for 365 

storm 2 of 11 cm.  366 

3.3 Experimental Design 367 

A conceptual overview of the process used for constructing an emulator, in the context of 368 

this study, is provided in Figure 4. 369 

 370 

 371 

Figure 4: Conceptual framework for developing an estuarine hydrodynamic emulator.  372 

 373 

 The first step in building an emulator is the selection of design points (experimental 374 

design) to create the training dataset. This study implements a design from the commonly 375 

utilized Latin Hypercube sampling (LHS) family of schemes first explored by McKay et al. 376 

[1979]. LHS is one of the oldest and most popular experimental designs and has been found to 377 

perform well for complex simulators [Jones and Johnson, 2009]. The specific experimental 378 

design for this study was created using a “maximin” LHS design [Johnson, 1990; Morris and 379 

Mitchell, 1995] from the LHS package in R [Carnell, 2017].  380 

Parameters required for a LHS design are the number of dimensions to be included, the 381 

range of each dimension, and the number of design points. As detailed in section 3.2, this study 382 

used an input parameter dimensionality of 16, including wind speed and direction, sea surface 383 
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pressure, Hs, Tp, MWD, streamflow, base WL, and eight tidal equilibrium arguments. LHS 384 

considers only the maximum and minimum values of each dimension with design points spaced 385 

approximately uniformly across dimensions. Ranges were chosen for each parameter in an 386 

attempt to span all plausible forcing scenarios. This was determined by looking at 100-year 387 

return level events as calculated from the observational records. The size of the training dataset is 388 

typically controlled by the cost of running the simulator, but Loeppky et al. [2009] provide the 389 

general guidance that the training dataset should be approximately 10 times the number of 390 

dimensions of the input space. Given the 16 input dimensions of this study, this suggests a 391 

theoretical training dataset size of 160 runs. To explore the relationship between training dataset 392 

size and emulator skill and to validate the emulator’s overall effectiveness, this study 393 

conservatively developed a larger training dataset consisting of 480 ADCSWAN runs.  394 

3.4 Emulator Configuration  395 

A variety of formulations have previously been used in an emulation context, including 396 

support vector machines, artificial neural networks, radial basis functions, and many others [Jin 397 

et al., 2001; Gano et al., 2006; Razavi et al., 2012]. This study uses GPR, (also referred to as 398 

Kriging), a Bayesian statistical non-parametric regression model well suited to this particular 399 

application as it scales well to high-dimensional input and intrinsically considers model 400 

uncertainty [O’Hagan, 2006; Levy and Steinberg, 2010]. Furthermore, GPR is a general and 401 

flexible framework that can be optimized for a variety of modeling problems [Rasmussen and 402 

Williams, 2006]. For example, many other common emulator formulations, such as neural 403 

networks [Rasmussen and Williams, 2006] and radial basis functions [Anjyo and Lewis, 2011], 404 

can be shown to be equivalent to GPR under specific conditions. 405 

The foundational definition of a Gaussian process is that of an infinite collection of 406 

variables for which any finite subset is described by a multivariate Gaussian distribution. Every 407 

point in the input space can be modeled as a random variable (due to uncertainty about the 408 

functional response to inputs). A Gaussian process governs how these variables are related. A 409 

common way of thinking about GPR is as a distribution over functions [Rasmussen and 410 

Williams, 2006]. This is mathematically tractable as a GPR can be completely defined by a mean 411 

and covariance function (due to being modeled as a multivariate Gaussian distribution). From a 412 

Bayesian perspective, this means a GPR is specified using a prior mean and covariance function. 413 
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The data then updates this prior, using Bayesian inference, with information about the true form 414 

of the function to develop the posterior. The mean posterior function is then the most probable 415 

function (considering all possible functions) given the data that has been observed.  416 

This process is conceptualized for a one-dimensional case in Figure 5. The effect of the 417 

Bayesian conditioning on the emulator can be seen as “anchoring” the posterior sample functions 418 

(and uncertainty) at locations of observations. This limits the possible functions to those that go 419 

through these observed points. Uncertainty is quantified by considering the possible functions 420 

that pass through these training points. 421 

 422 

Figure 5: Example 1-D application of GPR for determining f(x) from observations. Panel (a) shows three 423 
random sample functions drawn from the prior distribution. A non-informative prior is specified so the 424 
average over functions has a zero mean. Panel (b) shows 3 random sample functions drawn from the 425 
posterior distribution after 4 training observations (dark black points). The effect of training is to 426 
constrain possible functions to only those that go through observation points. In panel (b), the shaded 427 
region represents plus and minus 2 standard deviations from the mean posterior prediction. Figure after 428 
Rasmussen and Williams [2006]. 429 

 430 

The first component of a Gaussian process is the mean function, which defines the mean 431 

of the infinite set of functions that are being considered. A common choice is to set the prior 432 

mean to zero, which can be thought of as a non-informative prior where the form of the function 433 

between inputs and outputs is unknown. This is demonstrated in Figure 5, as shown by the 434 

approximate mean of the sample prior functions being zero. As an alternative, this study follows 435 

the methodology of Timmermans [2015] who used a simple linear regression to obtain 436 
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information about the mean function’s form. Residual analysis of our data showed a cubic 437 

relationship for the tidal equilibrium argument terms, a somewhat expected result due to the 438 

cyclic nature of tides. Based on this result, the prior mean function was defined with a cubic term 439 

for all tidal equilibrium argument inputs and a linear term for all other inputs. A k-fold cross-440 

validation (see section 4.2) was performed to evaluate emulator skill with and without the 441 

modified mean function. Results showed a significant gain in skill (both in terms of RMSE and 442 

Determination, R2) by using the modified mean function.  443 

The covariance function of a Gaussian process is the second necessary component for 444 

defining the emulator. The covariance function (often called the kernel) can be thought of as 445 

describing the relationship between points in the process. Practically this describes the 446 

smoothness of the resulting GPR. In general, the covariance function contains hyper-parameters 447 

describing the details of the relationship between points (e.g., parameters such as length-scale, 448 

signal variance, etc.). These parameters can be inferred from the data, which is commonly done 449 

through maximizing the marginal likelihood rather than full Bayesian inference [Schulz et al., 450 

2018]. This was the approach used for this study. 451 

A comparison of model performance was performed using 3 commonly used covariance 452 

functions: the Gaussian, squared exponential, and Matern [Rasmussen and Williams, 2006]. The 453 

Matern covariance function was tested with ν (a parameter controlling smoothing) equal to 1.5 454 

and 2.5. The best performing model was evaluated using k-fold cross-validation and comparing 455 

model RMSE values [Kohavi, 1995; Arlot and Celisse, 2010]. K-fold cross-validation breaks the 456 

total training dataset into k segments and cycles through every possible combination of 457 

withholding one segment for validation and training the emulator with the remaining segments. 458 

This results in an ensemble of skill metrics for which the mean is less biased and more robust to 459 

the training period than a standard validation methodology [Arlot and Celisse, 2010]. It was 460 

found that the Matern (ν =2.5) performed the best and therefore was utilized for all results found 461 

in the following section. The training of the emulator was performed using the Managing 462 

Uncertainty in Complex Models (MUCM) package in R [Malde et al., 2016a]. 463 
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4. Results  464 

4.1 Error Introduced by Model Simplifications 465 

With the construction of the emulator being hierarchical (Figure 2), it becomes important 466 

to assess the skill of the emulator at multiple simplification levels to determine where errors are 467 

being introduced. This was investigated for simulator simplifications by looking at the 5 largest 468 

storms, in terms of NTR, on record (Table 1). Storm events were chosen for this analysis as it is 469 

expected that the strong forcing gradients and rapidly changing dynamics of these events would 470 

provide the most robust test of simulator simplifications. For each storm, WLs were calculated 471 

using the Full Simulator (dynamic, non-simplified) and the Stationary Simulator (all 472 

simplifications except for emulation) to quantify the sum of level 2 and level 3 errors. This 473 

comparison was performed at six or seven (seven except for storm 2) temporally random points 474 

distributed across each storm. Figure 6 shows the difference between calculated WLs (level 1 475 

simplification minus level 3 simplification) at two locations: the tide gauge (Figure 6a) and WL 476 

station 7 (Figure 6b). This difference is denoted here as the “error” resulting from simplifying the 477 

simulator. Two locations are plotted to visually sample how error is affected by location within 478 

the estuary. 479 

 480 

Figure 6: Error between Full and Stationary (Level 1 and Level 3) Simulator calculated WLs. The 481 
histogram includes comparisons for storms 1-5 (Table 1). The bold line represents zero error while the 482 
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dotted line is the mean error of the ensemble. Subplot (a) is computed at the tide gauge location while 483 
subplot (b) is at WL station 7 (located deeper within in the estuary; Figure 1). 484 

 485 

The error computed via this test was found to have a max of 25 cm with a RMSE of 6 cm 486 

at the gauge location. The maximum RMSE for approximately 100 test stations randomly 487 

scattered across the estuary domain was found to be 9 cm. The Simplified Simulator was found 488 

to be only slightly biased with a mean approximately 2 cm lower than the Full Simulator 489 

(represented as a positive mean error in Figure 6). Additional snapshot runs were performed to 490 

examine the model’s error for non-storm conditions (not shown). Results confirmed that the 491 

Simplified Simulator, on average, performs better for non-storm conditions, suggesting that the 492 

results in Figure 6 are likely conservative. 493 

4.2 Emulator Validation 494 

The ability of the emulator to replicate the Stationary Simulator (level 4 error) was 495 

quantified using a k-fold cross-validation. Figure 7 shows the results of the cross-validation with 496 

5 segments comparing emulated WLs and simplified simulator WLs.  497 



 22

 498 

Figure 7: Panel (a): Simplified Simulator vs. emulator WLs for the full training dataset. The comparison 499 
was performed using a 5-fold validation procedure. Panel (b): histogram of the error between Simplified 500 
Simulator and emulator WLs. 501 

 502 

Overall the emulator was found to perform well at this comparison level with a high level 503 

of skill. The emulator shows little bias (mean of the residuals is less than 1 cm), and relatively 504 

even variance in residuals across WL magnitude (Figure 7a). However, the width of the 505 

histogram in Figure 7b suggests that this step introduces more error than simulator 506 

simplifications. The RMSE was found to be around 13 cm (level 4 error) which is significantly 507 

larger than the calculated simulator simplification error (Figure 6, sum of level 2 and level 3 508 

error) of approximately 6 cm. However, this comparison of RMSEs is imperfect as the level 4 509 
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error assessment is based on a larger sample size and more rigorous k-fold validation and the 510 

level 2 and level 3 error assessment only examined performance during storm events. 511 

4.3 Emulator Performance: Westport, WA Tide Gauge 512 

The next stage of quantifying the skill of the emulator is to compare emulated WLs to 513 

observations at the tide gauge. This test provides a measure of the cumulative level 4 error, or the 514 

total integrated error from predicting observed WLs using emulation. This analysis was 515 

performed by using the emulator to hindcast hourly WLs at the location of the tide gauge for the 516 

entire period of record (2006-2016). Comparison between tide gauge observations and hourly 517 

emulated WLs for a randomly chosen month long segment are shown in Figure 8. Overall, 518 

hourly emulated WLs (for the over 10-year long record) compare favorably to the tide gauge 519 

with an R2 value of greater than 0.96, RMSE of approximately 15 cm, and a bias of less than 1 520 

cm. 521 

 522 

 523 

 524 

Figure 8: Comparison of emulated (red dashed line) and observed (black line) hourly WLs at the Grays 525 
Harbor tide gauge for January 2010. Coefficient of determination is calculated using the entire tidal 526 
record (2006 - 2016). WLs are plotted in reference to mean sea level. 527 

 528 
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As with tide gauge records, WL output from an emulator can be considered as the sum 529 

between two components: tides and NTRs. In the PNW, tides are the dominant source of WL 530 

variability [Allan and Komar, 2002a] and so the skill of the emulator in predicting WLs is 531 

primarily controlled by its ability to reproduce the deterministic tides. However, coastal hazard 532 

research often considers NTR individually as the driver of extreme WLs on top of regular, and 533 

well predicted, tidal cycles. Therefore, it is additionally important to test the emulator’s skill at 534 

reproducing NTR signals. Furthermore, this provides a more robust test of emulator performance 535 

as NTR is not explicitly modeled as an output by the emulator. 536 

NTRs are often calculated at tide gauges by subtracting the predicted tide (determined 537 

through harmonic analysis) from the measured WL. This procedure can be problematic since 538 

NTR may affect tidal phase, resulting in a false NTR signal from out of phase tidal signals 539 

[Pugh, 1996; Haigh et al., 2014; Serafin and Ruggiero; 2014]. Therefore, for this study NTRs 540 

were calculated from tide gauge data using the procedure of Serafin and Ruggiero [2014] 541 

(modeled after Bromirski et al., 2003), which uses spectral filtering to remove energy from tidal 542 

bands.  543 

The Bromirski et al. [2003] methodology is not used to determine NTRs from the 544 

ADCSWAN simulations. Storm simulations are on the scale of weeks which is too short 545 

temporally to recover energy across all tide bands of interest in the frequency domain. 546 

Instead, NTRs from the ADCSWAN simulations (at all simplification levels) and emulator 547 

simulations were calculated as a full forcing run minus a tidal only run. Emulated NTRs were 548 

then subsequently smoothed with a loess filter to reduce noise associated with tidal phase 549 

mismatches between the tide-only and full forcing emulated time series.  550 

 Comparison of observed and hindcasted NTRs for storms 1-5 (Figure 9) show a good 551 

overall performance of the emulator. To contextualize this comparison, the Full, Simplified, and 552 

Stationary Simulator calculated NTR time series are all plotted. A quantitative comparison of 553 

error between observed and modeled NTRs found that all simplification levels (from full 554 

ADCSWAN to emulator) have an RMSE of approximately 14 cm plus or minus 1 cm. The 555 

similar error across all simplification levels suggest that the largest source of error for NTR is in 556 

Full Simulator itself (level 1). For example, in Figure 9b it is clear that the Full Simulator (red 557 

line) is unable to reproduce the peak NTR signal in storm 2.  558 
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 559 

Figure 9: Tide Gauge comparison of observed and modeled NTR at various simplification levels. Each 560 
subpanel (a through e) is one of the top 5 storms of record (see Table 1). Due to windowing for spectral 561 
filtering, storm 5’s observed NTR is calculated using the subtraction method rather than the Bromirski 562 
method. All panels have the same y-axis scaling. The specific dates on the x axes vary by storm, but each 563 
tick represents a day.  564 

 565 
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4.4 Emulator Performance: USACE Field Campaign  566 

The tide gauge provides a rich dataset for validating the emulator due to its record length 567 

but is spatially limited to a single comparison point within the study area. One key strength of 568 

emulation, in comparison to a fully data driven methodology, is the ability to provide WL 569 

information across study sites where observational information may not be available. An 570 

emulator can be constructed at any location within the ADCSWAN model domain where output 571 

is provided. Figure 10 evaluates the spatial performance of emulation through a comparison of 572 

emulated and observed WL time series for a 1999 field campaign led by the USACE in Grays 573 

Harbor [Figure 1, Cialone et al., 2001; 2002].  574 

Figure 10 shows good performance between observed and modeled WLs across most 575 

locations. The main exception to this is WL station 6 which displays comparatively poor 576 

agreement between the observed and emulated WLs. This lack of skill is equally shown by the 577 

Full Simulator and is therefore not a result of the emulation procedure. Table 2 gives RMSE 578 

values for a comparison between observations and modeled output at various levels of 579 

simplification (level 1 simulations and level 4 emulations are shown in Figure 10). The levels 580 

described in the column headers are cumulative error, or a comparison of the model at that 581 

simplification level (Figure 2) to observations. No level 3 skill estimate was developed due to the 582 

computational constraints of simulating sufficient stationary point runs to accurately quantify 583 

model skill. 584 



 27

 585 

Figure 10: Comparison of observations (USACE deployments, Figure 1), Full Simulator and emulated 586 
WLs. All panels have the same y-axis and x-axis scaling. 587 

 588 

Table 2 indicates that the largest drop in skill is at the level 1 simulator simplification. 589 

This corresponds to the full ADCSWAN model’s inability to perfectly reproduce observations. 590 

Level 2 simplifications are found to only nominally impact modeled WLs with a small (1 cm) 591 
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increase in RMSE for some stations. Level 4 simplifications additionally produce very little loss 592 

of skill. 593 

Table 2: RMSE values comparing WL model output to observations at various simplification levels. 594 
Rows are locations / variables while the two column groupings represent instrument deployments. The 595 
length of the time series comparison varies depending on station deployment length. 596 

  Deployment 1: RMSE (cm)   Deployment 2: RMSE (cm) 

Station  Level 1 Level 2 Level 4   Level 1 Level 2 Level 4 

WL 1  24 24 25   21 21 22 

WL 2  19 20 22   16 17 19 

WL 3  26 26 27   37 37 29 

WL 4  19 19 21   22 23 20 

WL 5  21 22 22   19 19 20 

WL 6  44 44 41   36 36 39 

WL 7  21 22 28   23 21 27 

 597 

5. Discussion 598 

5.1 Effect of Simulator Simplifications 599 

The hierarchical validation used in this study provides a unique approach to quantifying 600 

the error budget as sourced from multiple simplification levels. A comparison of model 601 

performance at various simplification levels (Table 2) found that the primary source of lost skill 602 

is from the Full Simulator rather than from simulator simplifications or from emulation. 603 

Averaging across stations and deployment periods, all simplifications and emulation only 604 

increased RMSE by 1 cm relative to the level 1 error.  605 

This result is of particular interest when compared to the quantification of discrete error 606 

from only emulation (see the histogram in Figure 7) which shows that emulation introduces 607 

comparatively significant error into WL estimates. A cumulative level 4 comparison at the tide 608 

gauge (Figure 8) found a RMSE of 15 cm while Level 4 itself (Figure 7) had a RMSE of 13 cm. 609 

This result suggests that the error from each simplification during emulator construction is not 610 

independent. In other words, the cumulative error variance is not the sum of the discrete error 611 

variances. Practically, the dominance of level 1 error is found to mask that of the other levels. 612 
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This may not be true if level 1 error was able to be significantly reduced by improvements in 613 

process-based modeling at which point other simplifications may become relevant to the error 614 

budget.  615 

In terms of quantifying model skill, the RMSE for comparisons to the 1999 USACE field 616 

data is overall larger than the RMSE in comparison to the tide gauge. A close examination of the 617 

USACE WL time series shows significant high frequency noise that is likely the cause of the 618 

overall larger RMSE values. The USACE data exhibits more high frequency variability due to a 619 

shorter averaging period (6 minutes for the tide gauge and 3 minutes for the USACE data).  620 

This study suggests that the most effective action to improve emulated WL predictions is 621 

to reduce level 1 error. One option would be optimized tuning, a process which can be 622 

accomplished by including tuning parameters within the emulator framework [Kennedy et al., 623 

2006; Hall et al., 2011;]. ADCSWAN could also be replaced with a different simulator or 624 

physics implementation, for example ADCSWAN in 3D baroclinic mode. This would come at 625 

the cost of drastically increasing computation time and requiring additional input dimensionality 626 

in the form of density, temperature, and salinity fields. 627 

A level 1 error reduction could also be accomplished through improving the quality of 628 

model input data, both in terms of bathymetry and forcing. Incorrect bathymetry is likely the 629 

source of errors for WL station 6. Figure 10 shows WLs at this station having an asymmetric 630 

tidal signal indicative of shallow water while the observations have less asymmetry. This 631 

suggests that the water depth at the time of deployment was greater than the depth in the 632 

compiled bathymetric dataset used to generate the ADCSWAN grid. Therefore, investment in 633 

more accurate or more recent bathymetry is another viable step for decreasing level 1 error. 634 

Similarly, level 1 error integrates error as a function of poor-quality forcing, making 635 

improvements to forcing another promising avenue for error reduction.    636 

Level 2 error could be reduced by making less aggressive simplifications of forcing 637 

inputs. It is conceptually straight forward to include other input dimensionality such as spatially 638 

variable atmospheric forcing or full spectral wave forcing. A promising strategy for including 639 

field variables as input dimensions is through decomposing the field into principal components 640 

[Higdon et al., 2008; Liu and Guillas, 2017].  641 
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There are additionally a range of options for avoiding the stationarity assumption made in 642 

this study, which would eliminate or reduce level 3 error. The incorporation of temporal 643 

variability in emulators is reviewed by Reichert et al. [2011] who suggest the following 644 

strategies: 645 

1) Apply a standard emulation methodology but with time as an additional degree of 646 

dimensionality. [Conti et al., 2005] 647 

2) Describe the time series using basis functions and then apply emulation to the basis 648 

function coefficients. [Bayarri et al., 2007; Higdon et al., 2008] 649 

3) Emulate the difference from one time point to the next. [Bhattacharya, 2007; Conti et al., 650 

2009] 651 

4) Use a Gaussian stochastic process as a Bayesian prior. [Liu and West, 2009] 652 

5) Develop a hybrid dynamic/emulated model, or a “Mechanistic dynamic emulator.” 653 

[Reichert et al., 2011; Albert C., 2012]  654 

In the context of this study, strategy 1 is conceptually the simplest but it is not clear a priori how 655 

far into the past the system’s memory extends and each included time step multiplies the 656 

dimensionality of the input space. Strategy 2 is complicated by identifying basis functions that 657 

adequately capture the various contributing signals. For example, a Fourier transformation is a 658 

natural solution except that storm surge is non-periodic and an important contributor to estuarine 659 

WLs. Strategies 3-5 all have potential advantages but bring additional complexity to an already 660 

complex methodology so were not explored further. 661 

For reducing level 4 error, GPR is a flexible framework and there are likely gains to be 662 

made through a more exhaustive approach for emulator specification. In particular, handling of 663 

the periodic nature of tides within the covariance function [Roberts et al., 2013] is a promising 664 

research direction. 665 

5.2 Computational Cost Considerations 666 

Emulation is an approach to dramatically reduce simulation times and is therefore most 667 

valuable in situations where the simulator must be run for very long periods or for multiple 668 

iterations (e.g., probabilistic risk assessment). Emulation requires an upfront cost, through the 669 

running of multiple simulations to construct a training dataset, but is comparatively 670 

instantaneous after this initial investment. As the nature of the trade-off is computation time, it is 671 

useful to review the costs of building the training dataset. 672 
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The first control on computational cost for the training set is the number of input 673 

dimensions. The simplifications implemented in this study managed to reduce the input space to 674 

16 dimensions. Each design point took approximately 66 core hours to run in parallel on a server 675 

with Intel Xeon E52450 CPUs (2.1 GHz). With this setup, a full experimental design of 160 676 

points would require over 10.5 thousand core hours (although with parallelization the actual time 677 

was much less). This study developed a larger experimental design (over 400 points) but this was 678 

primarily for validation rather than emulator skill (see discussion below). Full ADCSWAN 679 

required approximately 18 core hours per day of simulation time. Based off these computational 680 

costs, emulation becomes an efficient option if approximately one and a half years of simulation 681 

are required. This limit is highly situationally dependent and is controlled by processor speed, 682 

simulator, emulator, etc. and is intended only as an order of magnitude reference. Furthermore, 683 

emulation is primarily targeted at probabilistic methodologies, rather than hindcasting, for which 684 

multiple iterations of time series quickly sum to very large total simulation times.  685 

The above analysis is based on a LHS design and the Loeppky et al. [2009] guideline that 686 

a training dataset should be around 10 times the number of input dimensions. However, LHS is 687 

one of many possible experimental designs [Levy and Steinberg, 2010]. Significant research has 688 

focused on optimizing experimental designs beyond LHS and it is possible that a more complex 689 

design could reduce the size of the training dataset. For example, LHS does not consider the 690 

probability that a particular combination of input parameters may occur. Therefore, some design 691 

points are likely poorly utilized exploring space that is physically impossible or highly 692 

improbable (for example, high wave heights associated with low wave periods). 693 

Finally, the above analysis did not consider the effect of training dataset size on skill. 694 

This relationship was tested by quantifying emulator performance at a variety of training dataset 695 

sizes. For this analysis, the total body of simulations (480) was partitioned into smaller dataset 696 

sizes ranging from 50 to 450 simulations for testing. For each smaller dataset, a k-fold validation 697 

with 5 segments was performed (Figure 11) to quantify emulator skill at this smaller training 698 

dataset size. This analysis is identical to that described in section 4.2 but with an artificially 699 

decreased training dataset size. 700 
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 701 

Figure 11: Impact of training dataset size on emulator skill. RMSE is calculated with a 5-fold cross-702 
validation and represented by a standard boxplot. The dotted vertical line represents the theoretical 703 
training dataset size from Loeppky et al. [2009]. 704 

 705 

Results from this analysis are in good agreement with the guidance of Loeppky et al. 706 

[2009] in that ten times the number of input dimensions is sufficient for building a skillful 707 

emulator (Figure 11). Beyond this limit, only very small gains in skill are realized, suggesting 708 

that it is not efficient to over build the training dataset. 709 

It is worth considering the cumulative computational cost of developing multiple 710 

emulators. This study takes the approach of building individual emulators at each location of 711 

interest. While emulator training and simulation is rapid for individual emulators, the sum 712 

computational cost of constructing many emulators can be significant. This is especially true 713 

considering that large estuarine hydrodynamic models can be of very high output dimensionality 714 

(the utilized Grays Harbor ADCSWAN grid has over 29,000 nodes). A common solution is to 715 

dimensionally reduce model outputs via approaches such as principal component analysis [Chen 716 

et al., 2011; Jia and Taflanidis, 2013; Jia et al., 2016; Bass and Bedient, 2017]. An alternative 717 

option uses the multivariate Gaussian process to generalize the standard GPR case to a “multi-718 

output emulator” [Conti and O’Hagan, 2010; Fricker et al., 2010]. While not considered in this 719 

study, which is primarily concerned with point assessments, these approaches could result in 720 

significant computational savings for a larger output dimensionality. Further, considering 721 
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emulators individually implicitly assumes independence of output variables and ignores the 722 

inherent correlation between output variables [Rasmussen and Williams, 2006]. 723 

5.3 Emulation Beyond Water Levels 724 

While this study has focused primarily on emulating WLs, emulation can easily be 725 

extended to other variables in a coastal hazards framework. To explore this possibility, Hs was 726 

emulated at the observational Hs stations from the 1999 USACE field campaign (Figure 1) 727 

[Cialone et al., 2001; 2002]. Hs emulators were developed using an identical approach to that of 728 

WLs except that Hs emulation was found to not need cubic terms for the prior mean function. A 729 

comparison to observations (Figure 12) shows that GPR emulators perform well for Hs with the 730 

highest Hs (around September 26, 1999) being well reproduced by the emulator at stations 0, 1, 731 

2, 3, and 4 (Figure 12). Performance is comparatively poor at stations 5 and 6, which are further 732 

within the estuary and less influenced by offshore waves. These results are further quantified in 733 

Table 3 which shows poor skill for interior Hs stations. It should be noted, however, that the Hs 734 

signals at these two stations have low variance and are barely above the noise floor. 735 
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 736 

Figure 12: Comparison of observations (USACE deployments), Full Simulator and emulated Hs time 737 
series. Symbols are used for the observations for the sake of visual clarity. All panels have the same y-738 
axis scaling. 739 

 740 

Results show that, similarly to WLs, the largest loss of skill is at simplification level 1. 741 

Simplified Simulator and emulator results are found to closely track the Full Simulator. This is 742 
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most evident at the bay interior stations where the Full Simulator and emulator are both found to 743 

over-predict Hs. Table 3 reveals that level 2, 3 and 4 simplifications produce little loss of skill 744 

for calculated Hs (average increase in RMSE of 2 cm). An exception to this is Hs station 5 which 745 

shows a significant increase in RMSE at the emulation level. The cause of poor emulator 746 

performance at this one location is unclear but it is likely due to a poor emulator model fit. 747 

 748 

Table 3: RMSE values comparing Hs model output to observations at various simplification levels. Rows 749 
represent station locations while the two column groupings represent instrument deployments. Hs station 750 
0/7 was relocated so deployment 1 values represent the Hs station 0 location and deployment 2 values 751 
representing the station 7 location.  752 

  Deployment 1: RMSE (cm)   Deployment 2: RMSE (cm) 

Station  Level 1 Level 2 Level 4   Level 1 Level 2 Level 4 

Hs 0/7  32 32 37   73 73 75 

Hs 1  38 39 37   61 61 69 

 Hs 2  45 46 51   48 49 61 

Hs 3  45 45 35   52 52 50 

Hs 4  49 50 40   148 148 42 

Hs 5  47 47 104   136 136 209 

Hs 6  35 35 28   40 40 38 

 753 

Overall these results suggest that emulation could be integrated into many parts of an 754 

estuary modeling system. However, a key assumption of emulation with GPR is smoothness in 755 

response characteristics, suggesting that GPR may be sub-optimal for “jumpy” variables. Not 756 

shown are similar results for Tp which can exhibit discontinuities within estuaries as Tp switches 757 

from one wave spectrum component to another. The emulator is qualitatively able to capture Tp 758 

characteristics but cannot resolve these instantaneous jumps. For this reason, it is important to 759 

carefully consider the form of the output variable being emulated and its relation to the input 760 

parameters. 761 
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5.4 Example Emulator Application: Extreme Water Level Decomposition  762 

Outside of validation, it is illustrative to explore an example application of emulation. For 763 

this purpose, a decomposition of the relative forcing contributions responsible for extreme WLs 764 

within Grays Harbor was performed. Seven versions of a 31-year time series (1984-2015) were 765 

emulated under different forcing scenarios. As a baseline, a “full forcing” case time series was 766 

emulated with the observed forcing at Grays Harbor (comparable to the hindcasts in Figure 8 and 767 

Figure 10). Each additional forcing scenario was emulated with one forcing contribution 768 

excluded (waves, wind, pressure, base WL, streamflow, and tides) to isolate the relative 769 

contribution of individual forcings to WLs. A particular forcing contribution was calculated as 770 

the emulator output WL with full forcing minus the emulator output WL with all forcing except 771 

the component of interest. The exception to this is tides (which cannot be turned off due to how 772 

they are included in the emulator) which were calculated simply as emulator output with no other 773 

forcing but tides. WL contributions were calculated at the time of the 31 annual maximum WL 774 

events as determined by the full forcing time series. The average relative contribution of each 775 

forcing component over the 31 annual maxima are plotted along East-West and North-South 776 

transects in Figure 13.  777 

 778 
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 779 

Figure 13: Average WL contribution from forcing components during extreme events (maximum annual 780 
WLs). Two transects are plotted with subplot (b) showing plotted transects, (East-West, EW) and (North-781 
South, NS), with station locations marked as ticks. Tick locations are approximate (within 1 km) to 782 
scattered station locations. Subplot (a) is the East-West transect and subplot (c) is the North-South 783 
transect.  784 

The diverse mix of contributions for each bar in Figure 13 shows that extreme WL events 785 

are compound in nature. This conclusion is further supported by the variance in emulated 786 

extreme WL contributions (not shown) which reveals that the composition of each individual 787 

annual maximum event varies widely across the timeseries. The mean contribution of each 788 

forcing is found to be significant providing evidence that all included forcing processes are 789 

important for properly quantifying extreme water levels. The only exception is streamflow which 790 

is found to be nominally important except near the streamflow boundary. This result is likely 791 

specific to the Grays Harbor estuary and would be different for a more hydrologically dominated 792 

estuary system [Svensson and Jones, 2004; Lavery and Donovan, 2005; Chen et al., 2014].  793 

The mix of contributions is found to be spatially variable across the estuary domain, 794 

leading to both an East-West and North-South gradient in contributions to WLs. For example, 795 

the streamflow contribution is found to increase moving west towards the estuary’s streamflow 796 
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inlet. Wave influence is found to have a significant contribution to the annual maxima but only at 797 

stations in the northern and eastern reaches of the bay. This result is likely due to breaking 798 

induced setup not occurring at the bay’s entrance channel. The influence of wind increases to the 799 

north, due to the mean wind direction emanating from the south during storm events. The 800 

influence of pressure anomalies on extreme WLs is found to be uniform but this result is likely 801 

from the spatial simplification of sea level pressure fields. 802 

Not shown in Figure 13 is the contribution from tidal forcing. This is primarily for scale 803 

reasons as the tidal component is an order of magnitude larger than that from other forcing 804 

(average of 140 cm). Tides also show a gradient across the estuary although with the opposite 805 

pattern as that shown in Figure 13. The tidal component of annual maxima WLs decreases by 806 

about 30 cm moving from the center of the estuary moving North or East. As WLs are the sum of 807 

these two components (tides and forcing driven NTR), the calculated gradient in total WLs is 808 

less than that shown in Figure 13 (under 20 cm across the two transects).  809 

6. Conclusions 810 

This paper has presented an application of emulation, or surrogate modeling, to the 811 

problem of rapidly simulating hydrodynamic variables within the Grays Harbor, WA estuary. 812 

This methodology is targeted towards a variety of computationally constrained problems 813 

including probabilistic modeling, uncertainty quantification, model optimization, and non-814 

parametric extreme event analysis. To facilitate efficiently achieving these goals, this study has 815 

focused on validating and quantifying the error induced by emulation. Additionally, a variety of 816 

simplifications to the simulator have been suggested for reducing input dimensionality, and 817 

therefore the size of the emulator training dataset. 818 

The results from this study suggest that the Gaussian Process regression (GPR) derived 819 

emulator is skillful for calculating a variety of model output variables (WL, NTR, and Hs). A 820 

decadal-scale comparison of emulated WLs to tide gauge data showed the emulator having a 821 

RMSE of 15 cm. Emulator performance is evaluated at multiple observation points across the 822 

estuary domain providing confidence that emulation is skillful across spatial extents. 823 

Decomposing the error from different emulator construction simplification levels shows that the 824 

largest source of unexplained variance in emulator hindcasts is from ADCSWAN itself. Of 825 

particular interest, strong simulator simplifications (including that of stationarity) are a relatively 826 
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low contributor to losses in emulator performance (average increase in RMSE of 1 cm). 827 

Therefore, future efforts to improve emulator performance should focus on improving the Full 828 

Simulator before reducing simplifications or optimizing the emulator.  829 

Emulation is additionally found to be very efficient after the construction of the training 830 

dataset. Using an LHS experimental design, analysis shows that the training dataset size 831 

guidance of 10 times the number of input dimensions [Loeppky et al., 2009] is optimal in the 832 

case examined here. Overall emulation is found to have the same order of magnitude skill as 833 

process-based models as well as showing significant gains in computational efficiency. 834 

Therefore, emulation is shown to be a viable path for exploring estuarine hydrodynamic 835 

modeling problems. 836 

Finally, the emulator was applied to investigate the relative contributions of different 837 

forcing variables to annual maxima WLs and NTR at the study site. Results show a diverse mix 838 

of forcing contributing to annual extreme WLs, indicating the importance of considering 839 

compound events for flood hazard assessments in the PNW. All forcing components, along with 840 

WL itself, were found to exhibit significant spatial variability hinting at important information 841 

for flood vulnerability assessment. Tides were found to be the largest contributor to extreme 842 

WLs with other components being of the same order of magnitude. The exception to this is 843 

streamflow which was found to be, on average, a relatively minor contributor to extremes except 844 

near the river’s mouth. Additionally, waves were found to only contribute to WLs at stations 845 

near the edge of the estuary domain, a result that is likely tied to wave penetration into the 846 

estuary. While only a single example application of emulation to estuary hydrodynamics 847 

questions was explored, results signal the significant potential of emulation to a broad range of 848 

applications.  849 
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